viernes, 22 de mayo de 2020

CICLO DE OTTO Y CICLO DIÉSEL.




CICLO DE OTTO 

El ciclo Otto es el ciclo termodinámico que se aplica en los motores de combustión interna de encendido provocado por una chispa eléctrica (motores de gasolina, etanol, gases derivados del petróleo u otras sustancias altamente volátiles e inflamables). Inventado por Nicolaus Otto en 1876, se caracteriza porque en una primera aproximación teórica, todo el calor se aporta a volumen constante.




CICLO 4T 

El ciclo de 4 tiempos consta de seis procesos, dos de los cuales (E-A y A-E) no participan en el ciclo termodinámico del fluido operante pero son fundamentales para la renovación de la carga del mismo:


(2 VUELTAS CIGUEÑALES)

1 .E-A: admisión a presión constante (renovación de la carga).
2. A-B: compresión de los gases e isoentrópica.
3. B-C: combustión, aporte de calor a volumen constante. La presión se eleva rápidamente antes de comenzar el tiempo útil.
4. C-D: fuerza, expansión isoentrópica o parte del ciclo que entrega trabajo.
5. D-A: Escape, cesión del calor residual al ambiente a volumen constante.
6. A-E: Escape, vaciado de la cámara a presión constante (renovación de la carga.)(isobárico).



(2 VUELTAS CIGUEÑALES)

1. Durante la primera fase, el pistón se desplaza hasta el PMI (Punto Muerto Inferior) y la válvula de admisión permanece abierta, permitiendo que se aspire la mezcla de combustible y aire hacia dentro del cilindro (esto no significa que entre de forma gaseosa).
2. Durante la segunda fase las válvulas permanecen cerradas y el pistón se mueve hacia el PMS, comprimiendo la mezcla de aire y combustible. Cuando el pistón llega al final de esta fase, una chispa en la bujía enciende la mezcla.
3. Durante la tercera fase, se produce la combustión de la mezcla, liberando energía que provoca la expansión de los gases y el movimiento del pistón hacia el PMI. Se produce la transformación de la energía química contenida en el combustible en energía mecánica trasmitida al pistón, que la trasmite a la biela, y la biela la trasmite al cigüeñal, de donde se toma para su utilización.
4. En la cuarta fase se abre la válvula de escape y el pistón se mueve hacia el PMS (Punto Muerto Superior), expulsando los gases producidos durante la combustión y quedando preparado para empezar un nuevo ciclo (renovación de la carga).




(1 VUELTA CIGÜEÑAL)

1. Admisión - Compresión). Cuando el pistón alcanza el PMI (Punto Muerto Inferior) empieza a desplazarse hasta el PMS (Punto Muerto Superior), creando una diferencia de presión que aspira la mezcla de aire y gasolina por la lumbrera de admisión hacia el cárter de pre compresión .(Esto no significa que entre de forma gaseosa). Cuando el pistón tapa la lumbrera, deja de entrar mezcla, y durante el resto del recorrido descendente, el pistón la comprime en el cárter inferior, hasta que se descubre la lumbrera de transferencia que lo comunica con la cámara de compresión, con lo que la mezcla fresca pre comprimida ayuda a expulsar los gases quemados del escape. Cuando el pistón empieza a subir la lumbrera de transferencia permanece abierta una parte de la carrera y el cárter no coge aire fresco sino que retornan parte de los gases, perdiendo eficiencia de bombeo. A altas revoluciones se utiliza la inercia de la masa de los gases para minimizar este efecto.(renovación de la carga).

2. (Expansión - Escape de Gases). Una vez que el pistón ha alcanzado el PMS y la mezcla está comprimida, se la enciende por una chispa entre los dos electrodos de la bujía, liberando energía y alcanzando altas presiones y temperaturas en el cilindro. El pistón se desplaza hacia abajo, realizando trabajo hasta que se descubre la lumbrera de escape. Al estar a altas presiones, los gases quemados salen por ese orificio.




(1 VUELTA CIGÜEÑAL)

1. El rendimiento de este motor es inferior respecto al motor de 4 tiempos, ya que tiene un rendimiento volumétrico menor y el escape de gases es menos eficaz. También son más contaminantes. Por otro lado, suelen dar más par motor en la unidad de tiempo (potencia) para la misma cilindrada, ya que este hace una explosión en cada revolución, mientras el motor de 4 tiempos hace una explosión por cada 2 revoluciones, y cuenta con más partes móviles. En el pasado fueron sumamente populares por sus elevadas prestaciones en las motocicletas hasta una cierta cilindrada, ya que al aumentar ésta su consumo era excesivo.

2. Éste tipo de motores se utilizan mayoritariamente en motores de poca cilindrada (ciclomotores, desbrozadoras, cortasetos, moto sierras, etc.), ya que es más barato y sencillo de construir, y su emisión de contaminantes elevada es muy baja en valor absoluto.




EFICIENCIA DEL CICLO OTTO 

1. La eficiencia o rendimiento térmico de un motor de este tipo depende de la relación de compresión, proporción entre los volúmenes máximo y mínimo de la cámara de combustión.
2. Una relación de compresión baja no requiere combustible con alto número de octanos para evitar este fenómeno; de la misma manera, una compresión alta requiere un combustible de alto número de octanos, para evitar los efectos de la detonación, es decir, que se produzca una auto ignición del combustible antes de producirse la chispa en la bujía
3. El rendimiento medio de un buen motor Otto de 4 tiempos es de un 25 a un 30%, inferior al rendimiento alcanzado con motores diésel, que llegan a rendimientos del 30 al 45%, debido precisamente a su mayor relación de compresión.




PROPORCIONES

Esta proporción ha de permanecer lo más uniforme posible, dentro de unos estrechos márgenes de variación, se denomina factor lambda y se sitúa alrededor de 14-15 partes de aire en peso por cada parte de gasolina en peso, estando la mezcla estequiométrica aire/gasolina en 14,7:1






CICLO DIÉSEL. 

El ciclo del motor diésel (en contraposición al ciclo rápido, más aproximado a la realidad) ideal de cuatro tiempos es una idealización del diagrama del indicador de un motor diésel, en el que se omiten las fases de renovación de la carga, y se asume que el fluido termodinámico que evoluciona es un gas perfecto, en general aire. Además, se acepta que todos los procesos son ideales y reversibles, y que se realizan sobre el mismo fluido. Aunque todo ello lleva a un modelo muy aproximado del comportamiento real del motor, permite al menos extraer una serie de conclusiones cualitativas con respecto a este tipo de motores. No hay que olvidar que los grandes motores marinos y de tracción ferroviaria son del ciclo de 2 tiempos diésel.





FASES DEL CICLO DIÉSEL.

1. COMPRESIÓN:  Proceso 1-2: es un proceso de compresión adiabática reversible (isentrópica), es decir sin intercambio de calor con el exterior y con un trabajo realizado al sistema para comprimir lo. El pistón, estando en el punto muerto, empieza su carrera de ascenso, comprimiendo el aire contenido en el cilindro. Ello eleva el estado termodinámico del fluido, aumentando su presión, su temperatura y disminuyendo su volumen específico. En la idealización, el proceso viene gobernado por la ecuación del proceso adiabático (P.v^K^= Cte.) La presión en el punto 2 valdrá: 






2. COMBUSTIÓN: Proceso 2-3: en esta idealización, el aporte de calor Qp se simplifica por un proceso isobárico (a presión constante). Sin embargo, la combustión Diésel es mucho más compleja: en el entorno del punto muerto superior (PMS) (en general un poco antes de alcanzarlo debido a problemas relacionados con la inercia térmica de los fluidos, es decir el retraso que hay entre la inyección y la inflamación espontánea), se inicia la inyección del combustible (en motores de automóviles, gasóleo, aunque basta con que el combustible sea lo suficientemente auto inflamable y poco volátil).




3. EXPLOSIÓN – EXPANSIÓN:  Proceso 3-4: se simplifica por una expansión isentrópica (adiabática) del fluido termodinámico, hasta el volumen específico que se tenía al inicio de la compresión. En la realidad, la expansión se produce a consecuencia del elevado estado termodinámico de los gases tras la combustión, que empujan al pistón desde el PMS hacia el PMI, produciendo un trabajo. Nótese como, como en todo ciclo de motor de cuatro tiempos o dos tiempos, solo en esta carrera, en la de expansión, se produce un trabajo.





4. ÚLTIMA ETAPA: Proceso 4-1: esta etapa es un proceso isocórico (escape) es decir a volumen constante. Desde la presión final de expansión hasta la presión inicial de compresión. En rigor, carece de cualquier significado físico, y simplemente se emplea ad hoc, para poder cerrar el ciclo ideal. Sin embargo, hay autores que no satisfechos con todas las idealizaciones realizadas, insisten en dar un significado físico a esta etapa, y la asocian a la renovación de la carga, pues, razonan, es esto lo que se produce en las dos carreras que preceden a la compresión y siguen a la expansión: el escape de masa quemada y la admisión de masa fresca. No obstante, el escape es un proceso que requiere mucho más trabajo que el que implica este proceso (ninguno), y además ninguno de los  dos procesos se da, ni por asomo, a volumen específico constante.




IMPORTANCIA CICLO DIÉSEL

Es importante notar cómo, en el ciclo diésel, no se deben confundir nunca los cuatro tiempos del motor con el ciclo termodinámico que lo idealiza, que solo se refiere a dos de los tiempos: la carrera de compresión y la de expansión. El proceso de renovación de la carga  cae fuera de los procesos del ciclo diésel, y ni tan siquiera es un proceso termodinámico en el sentido estricto.







No hay comentarios:

Publicar un comentario

ELECTROQUIMICA

ELECTROQUIMICA Parte de la química que estudia los fenómenos químicos que provocan electricidad y los fenómenos eléctricos que dan ...